
PRESENTED BY: MICHAEL BARGURY (@mbrg0)

Credential Sharing as a Service: 
the Dark Side of No Code

github.com/mbrg/talks

https://github.com/mbrg/talks


About me
• OWASP LCNC Top 10 project lead

• CTO and co-founder @ Zenity

• Ex MSFT cloud security

• Dark Reading columnist

@mbrg0

bit.ly/lcsec

https://bit.ly/lcsec


Disclaimer
This talk is presented from an attacker’s perspective with the goal of raising 

awareness to the risks of underestimating the security impact of Low Code.

Low Code is awesome.



Outline
• Low Code in a nutshell

• Low Code attacks observed in the wild

• Living off the land – account takeover, lateral movement, PrivEsc, data exfil

• Hiding in plane sight

• Leveraging predictable misconfigs from the outside

• How to defend

• The latest addition to your red team arsenal



Low-Code/No-Code in a Nutshell

github.com/mbrg/talks

https://github.com/mbrg/talks


Exponential Growth in Business Development

K 1K
9K

37K

74K

K

20K

40K

60K

80K

2018 2019 2020 2021 2022

T
h

o
u

sa
n

d
s

No. Apps



Why Low Code?



If this sounds familiar, its because it is

Tech evolution



Build everything
• If this than that automation

• Integrations

• Business apps

• Whole products

• Mobile apps



Available in every major enterprise



Recap

✔Available on every major enterprise
✔Has access to business data and powers 

business processes
✔Runs as SaaS (difficult to monitor)
✔Underrated by IT/Sec



Low Code Attacks In The Wild: Living 
off the land

github.com/mbrg/talks

https://github.com/mbrg/talks


youtu.be/5naPxs0fEJc

https://youtu.be/5naPxs0fEJc


Step by step



https://docs.microsoft.com/en-us/connectors/connectors

How does the app authenticate to slack?

How do different users get 
authenticated by the same app?

Behind the scenes



https://docs.microsoft.com/en-us/connectors/connectors

Storing and sharing 
refresh tokens

Behind the scenes



Ready, set, AUTOMATE!





Credential Sharing as a Service



Credential Sharing as a Service

 Privilege escalation



Ransomware thru action connections

 Ransomware



Exfiltrate email thru the 
platform’s email account

 Data exfiltration



Move to machine

 Lateral movement



Introducing ZapCreds

github.com/mbrg/zapcreds

https://github.com/mbrg/zapcreds


Can we fool users to create connections for us?
• Set up a bait app that does something useful

• Generate connections on-the-fly

• Fool users to use it

• Pwn their connection (i.e. account)

 Account takeover



youtu.be/vJZpNJRC_10

https://youtu.be/vJZpNJRC_10


Can we get rid of this pesky approve window?



Can we get rid of this pesky approve window?

https://docs.microsoft.com/en-us/powershell/module/microsoft.powerapps.administration.powershell/set-adminpowerappapistobypassconsent



Low Code Attacks In The Wild: 
Can I stay here forever?

github.com/mbrg/talks

https://github.com/mbrg/talks


This has been done before

zenity.io/blog/hackers-abuse-low-code-platforms-and-turn-them-against-their-owners/

https://www.zenity.io/blog/hackers-abuse-low-code-platforms-and-turn-them-against-their-owners/


Dump files and tweet about it on a schedule



Encrypt on command



Persistency
What do we want?

❑ Remote execution
❑ Arbitrary payloads
❑ Maintain access (even if user account access get revokes)
❑ Avoid detection
❑ Avoid attribution
❑ No logs



Persistency v1

Persistency



Persistency v1
What do we want?



What do we want?

 Remote execution
 Arbitrary payloads

Persistency v1



Persistency v1
What do we want?

 Remote execution
 Arbitrary payloads
 Maintain access



Persistency v1
What do we want?

 Remote execution
 Arbitrary payloads
 Maintain access
 Avoid detection

Somebody else’s cloud



Persistency v1
What do we want?

 Remote execution
 Arbitrary payloads
 Maintain access
 Avoid detection
 Avoid attribution

Somebody else’s cloudCall endpoint 
anonymously to 

execute



Persistency v1
What do we want?

 Remote execution
 Arbitrary payloads
 Maintain access
 Avoid detection
 Avoid attribution
 No logs

Somebody else’s cloud

Call endpoint anonymously to 

execute



Persistency v2



Persistency v2

What do we want?
 Arbitrary payloads
 No logs



Solving persistency
Our current state:

 Remote execution
 Arbitrary payloads
 Maintain access
 Avoid detection
 Avoid attribution
 No logs



Executing arbitrary commands

https://docs.microsoft.com/en-us/connectors/flowmanagement/



Introducing
Powerful!

github.com/mbrg/powerful

https://github.com/mbrg/powerful




Create a flow List authenticated sessions to use 

Delete a flow





github.com/mbrg/powerful

https://github.com/mbrg/powerful


Powerful (persistency v3)
What do we want?

 Remote execution
 Arbitrary payloads
 Maintain access
 Avoid detection
 Avoid attribution
 No logs

1. Set up your flow factory
2. Control it though API and a Python CLI

github.com/mbrg/powerful

https://github.com/mbrg/powerful


Low Code Attacks In The Wild: 
Outside Looking In

github.com/mbrg/talks

https://github.com/mbrg/talks


The Internet

(managed Azure 
SQL instance)

Power Portals/Pages?





What’s ODATA and why should we care
“An open protocol to allow the creation and consumption of 
queryable and interoperable RESTful APIs in a simple and 
standard way.”

Power portals can be configured to 
provide access to SQL tables through 
ODATA using a specific URL:

portal.powerappsportals.com/_odata



What’s ODATA and why should we care
“An open protocol to allow the creation and consumption of 
queryable and interoperable RESTful APIs in a simple and 
standard way.”

Power portals can be configured to 
provide access to SQL tables through 
ODATA using a specific URL:

portal.powerappsportals.com/_odata

zenity.io/blog/the-microsoft-power-apps-portal-data-leak-revisited-are-you-safe-now/

https://www.zenity.io/blog/the-microsoft-power-apps-portal-data-leak-revisited-are-you-safe-now/


The fun begins
Goal: find misconfigured portals that expose sensitive data w/o 
auth.

Real world example:



Nothing to see here 
/_odata/globalvariables:



Can we scale it?
Recall the portal url:



Let’s use Bing!

zenity.io/blog/the-microsoft-power-apps-portal-data-leak-revisited-are-you-safe-now/

Can we scale it?
Recall the portal url:

https://www.zenity.io/blog/the-microsoft-power-apps-portal-data-leak-revisited-are-you-safe-now/


ODATA leak - what we found
• Vulnerability disclosures are in progress 

• Found
• PII – emails, names, calendar events

• Secrets – API keys, authentication tokens

• Business data – sales accounts, business contacts, vendor lists

zenity.io/blog/the-microsoft-power-apps-portal-data-leak-revisited-are-you-safe-now/

https://www.zenity.io/blog/the-microsoft-power-apps-portal-data-leak-revisited-are-you-safe-now/


Can we find more exposed data?



Can we find more exposed data?

Secrets are secured 
by a random GUID



Storage by Zapier 
API



Storage by Zapier 
API

‘12345’ is not a 
GUID…



Let’s see what happens..



Let’s see what happens.. profit!

Auth tokens, API keys, emails, phone no., crypto wallet IDs..

400$ bounty

zenity.io/blog/zapier-storage-exposes-sensitive-customer-data-due-to-poor-user-choices/

https://www.zenity.io/blog/zapier-storage-exposes-sensitive-customer-data-due-to-poor-user-choices/


Summary
• Low Code is 

• Huge in the enterprise

• Underrated by security teams

• Attackers are taking advantage of it by

• Living off the land – account takeover, lateral movement, PrivEsc, data exfil

• Hiding in plane sight

• Leveraging predictable misconfigs from the outside

• The latest addition to your red team arsenal

• ZapCreds – identify overshared creds

• Powerful – install a low code backdoor

• How to defend your org



How To Stay Safe

github.com/mbrg/talks

https://github.com/mbrg/talks


Do these 4 things to reduce your risk
1. Review configuration

• Bypass consent flag (Microsoft) 

• Limit connector usage

2. Review and monitor access for external-facing endpoints

• Webhooks

• ODATA (Microsoft)

• Storage (Zapier)

3. Review connections shared across the entire organization

4. Leverage the OWASP LCNC Top 10

https://owasp.org/www-project-top-10-low-code-no-code-security-risks/


PRESENTED BY: MICHAEL BARGURY (@mbrg0)

Credential Sharing as a Service: 
the Dark Side of No Code

github.com/mbrg/talks

https://github.com/mbrg/talks

	intro
	Slide 1
	Slide 2: About me
	Slide 3: Disclaimer
	Slide 4: Outline

	section 1: low code in a nutshell
	Slide 5
	Slide 6: Exponential Growth in Business Development
	Slide 7: Why Low Code?
	Slide 8: If this sounds familiar, its because it is
	Slide 9: Build everything
	Slide 10: Available in every major enterprise
	Slide 11: Recap

	section 2: living off the land
	Slide 12
	Slide 13
	Slide 14: Step by step
	Slide 15
	Slide 16
	Slide 17: Ready, set, AUTOMATE!
	Slide 18
	Slide 19: Credential Sharing as a Service
	Slide 20: Credential Sharing as a Service
	Slide 21: Ransomware thru action connections
	Slide 22: Exfiltrate email thru the platform’s email account
	Slide 23: Move to machine
	Slide 24: Introducing ZapCreds
	Slide 25: Can we fool users to create connections for us?
	Slide 26
	Slide 27: Can we get rid of this pesky approve window?
	Slide 28: Can we get rid of this pesky approve window?

	section 3: can I live here forever
	Slide 29
	Slide 30: This has been done before
	Slide 31: Dump files and tweet about it on a schedule
	Slide 32: Encrypt on command
	Slide 33: Persistency
	Slide 34: Persistency v1
	Slide 35: Persistency v1
	Slide 36: Persistency v1
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Persistency v1
	Slide 41: Persistency v2
	Slide 42: Persistency v2
	Slide 43: Solving persistency
	Slide 44: Executing arbitrary commands
	Slide 45: Introducing Powerful!
	Slide 46
	Slide 47: Create a flow
	Slide 48
	Slide 49
	Slide 50: Powerful (persistency v3)

	section 4: from the outside looking in
	Slide 51
	Slide 52: Power Portals/Pages?
	Slide 53
	Slide 54: What’s ODATA and why should we care
	Slide 55: What’s ODATA and why should we care
	Slide 56: The fun begins
	Slide 57: Nothing to see here 
	Slide 58: Can we scale it?
	Slide 59: Can we scale it?
	Slide 60: ODATA leak - what we found
	Slide 61: Can we find more exposed data?
	Slide 62: Can we find more exposed data?
	Slide 63: Storage by Zapier API
	Slide 64: Storage by Zapier API
	Slide 65: Let’s see what happens..
	Slide 66: Let’s see what happens.. profit!
	Slide 67: Summary

	section 5: how to stay safe
	Slide 68
	Slide 69: Do these 4 things to reduce your risk
	Slide 70


